Thermal Conductivity of Materials

Fourier's Law applies to all material. However, different materials conduct heat through very different mechanisms:

$$q_x$$
"= $-k\frac{dT}{dx}$

Basic Energy Carriers

Solids

Metals – Free Electrons & Lattice Vibrations

Non-Metals – Lattice Vibrations (Phonons)

Liquids and Gases

Individual Molecules

Metals - Free Electrons

electron electron scattering

((())) Lattice Vibrations

Free Electron

Kinetic Theory

$$k = \frac{1}{3}CV\lambda$$

C – Heat Capacity of Particle

V – velocity of the particle

 λ – mean free path

$$\lambda = \frac{V}{v} = \frac{V}{v_D + v_{ee} + v_{el}}$$

Collisional Frequency- Defect, Electron-Electron, Electron-Lattice

Thermal Conductivity of Metals

Thermal conductivity of Cu, Al, and W plotted as a function of temperature

Lattice Vibrations (Phonon)

((())) Lattice Vibrations

Phonon – Lattice Vibration

Contains a finite amount of energy that is dependent on the vibrational frequency.

$$k = \frac{1}{3}CV\lambda$$

V =the speed of sound

Therefore, the higher the speed of sound in a solid nonmetallic material the better the thermal conductivity

Thermal Conductivity of Diamond

Thermal Conductivity of Solids

$$k = k_e + k_l$$

Summation of the contribution from the electrons and the lattice

Weidemann – Franz Law – ratio of electrical conductivity and thermal conductivity is directly proportional to temperature

$$L = \frac{k}{\sigma T}$$

L – Lorenz Number $\sim 2.45 \times 10^{-8} \text{ W} - \Omega/k^2$

Thermal Conductivity of Gases

$$k \propto N\overline{V}\lambda$$

N- Number of Particles per unit Volume

 \overline{V} - Velocity

λ – Mean Free Path

Independent of Pressure

$$N \propto P$$
 $\lambda \propto \frac{1}{P}$

$$T \propto \frac{1}{2} m \overline{V}^2$$

Increases with Temperature
$$T \propto \frac{1}{2} m \overline{V}^2$$